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Understanding Linsig in the Real World 

"All models are wrong but some are useful" George Box, Statistician, 1978

Introduction 
For many years now, Linsig has been the go-to tool for traffic signal modelling. As it has developed over the years, it 

has increasingly secured a role both as a traffic model and as a design tool. It has also spread, quite literally, as the 

ability to model complex networks has been introduced and refined. On an isolated junction, the results from a Linsig 

model are easy to understand, making it a powerful design tool. The more complex the model, the more difficult it is 

to understand the results in the context of the real world. 

In this paper we look at how Linsig is used to model complex networks in a 'useful' way. In particular, how to use and 

understand the model to get information relevant to the real world of network management, planning and I.T.S. It 

examines techniques to get the most reliable and useful model data, as well as helping to explain what the data means 

and the implications it can have. 

Firstly, we should define what we mean by a ‘complex network’. There is no hard-and-fast definition, but the phrase 

is used here to describe the types of network that are traditionally difficult to model and understand in Linsig, and 

used to be (and still often are) referred for microsimulation. They tend to have at least one of the following 

characteristics: 

• Circular routes; 

• Multiple valid routes between the same origin and destination; 

• Restricted lane lengths between junctions or nodes. 

• Interference between nodes caused by queuing – “Sliver Queues” 

All these characteristics can be modelled and allowed for in Linsig, but the input and interpretation of the results is, to 

a greater or lesser extent, variable and difficult. In differing circumstances, all four characteristics may – or may not – 

be relevant. Tools are available in Linsig to automatically disable circular routes; flows are automatically assigned 

across routes and restricted lane lengths can be entered. None of these tools offer a ‘correct’ way to model these 

features though – the real world is just too messy! 

Instead, we can (and should) focus on how to build the model to be as useful as possible, and to interpret the results 

in the real world. Future versions of Linsig may make our models more useful and accurate, but they will only ever be 

a model, not the real thing. 
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Challenges 
The first complex characteristic we have identified above, is the appearance of 

‘circular routes’ in our model. This happens wherever our network provides a 

closed loop, in which traffic could theoretically pick a route from origin to 

destination that passes through similar parts of the network more than once – and 

potentially an indefinite number of times. The easiest example to understand is a 

driver circling around a roundabout, without turning off. 

It is easy to identify this and Linsig removes most of these routes by default. In 

some cases though, drivers may actually use circular routes to avoid sitting in 

excess queues. In other cases, in town centre environment, there may be genuine 

circular routes used for dropping off and picking people up at specific points, often 

by taxis or buses. Both of these situations need to be identified and allowed for, if 

they occur. 

The second characteristic, multiple valid routes, poses a basal challenge to the 

model – the problem of assigning traffic to lanes within a network. The Linsig 

assignment model by default allocates traffic based on delay, sharing the traffic 

out across all valid routes. But we know that different features affect driver lane 

(and therefore route) choice in different ways; a lane merging after a junction will 

discourage offside lane use on the approach. A well-used bus stop on the same 

approach will encourage use of the offside lane though. Neither of these will be 

automatically picked up or considered. 

Probably the most difficult feature of all to model is the effect of restricted lane 

lengths between junctions or nodes. There are currently no automatic facilities to 

recognise and control a model to take short lanes into consideration, as the 

reasons for short lanes and consequences vary so dramatically. Fundamentally though, Linsig uses a ‘vertical queueing’ 

model, which assumes traffic in a queue has no physical length. This is due to the statistical nature of all the versions 

of Linsig so far, as the queues are calculated rather than measured. The queue length results are all statistical estimates 

of average values, based on uniform arrival, and so a true physical queue length at any given time cannot be derived. 

With this in mind, it is difficult in many cases to predict what the effect of the queue will be. The average may be well 

within the available queueing space, however the ‘peak queue’ could exceed it. Again, this may, or may not, be a 

problem. There are features within Linsig that allow us to limit queuing, by penalising the capacity if the average queue 

exceeds a value. The penalty is arbitrary though, and the end result can be either ineffective, or overly harsh.  

Because of the potential for queueing, often short links require good progression through coordination. As many 

experienced traffic engineers can testify, getting good progression on one route is easy, getting good progression on 

every (overlapping) route is not so easy. 

Finally, sliver queues are one of the most common, but least understood phenomena to occur both in real life and 

appear in models. Many people ignore them, or ‘de-sliver’ their models without examining the cause. However anyone 

who while driving has found themselves in a queue for no apparent reason, only for traffic to speed up again, has 

Figure 1. Circular route in Linsig 

Figure 2. Nearside lane can technically be 
used for all ahead traffic, but is only really 
used by buses and taxis. 
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experienced a real sliver queue. These can be real and can cause real problems. Linsig can identify them, but assessing 

the potential impact is a matter of judgement, not one that a computer can make. 

Case Study – Queuing around A47 Junction 20 Interchange 
The Interchange between the A47 Soke Parkway, and A15 Paston Parkway, in Peterborough, had long standing 

problems of queueing and delays on the Northern and Southern slip roads from the A15. The largest traffic flows by 

far are a dominant A47 East-West and West-East flow, at-grade. The interchange had not previously been signal 

controlled, but signals were considered to alleviate the existing delays and to enable growth. Many people in the local 

area, including some working for the local highway authority, had concerns about the potential for worse queues to 

form as a result of signalling the interchange. 

Figure 3. A47 Junction 20 Southern off-slip queueing during off-peak 

In modelling the proposed junction, we quickly established that there was no optimal ‘minimalist’ solution, involving 

only two or three nodes signalled. Quite simply, the Easterly and Westerly flows always dominate. Signalling just the 

off-slips would quickly create a queue back to the previous un-

signalled nodes. Signalling just the A47 approaches, the queue on 

the circulatory would quickly block. An acceptable solution was 

found by signalling all four nodes, however we first had to be sure 

that we had understood the effect of queuing. 

The model results suggest that the proposed junction has positive 

Practical Reserve Capacity, and that the mean-maximum queue of 

all lanes is within the physical limits of the site. Before going any 

further, we ‘normalised’ the model, to more accurately reflect 

how the junction would operate in ‘real life’. We firstly manually 

checked and optimised the busiest routes for progression, 

adjusting offsets using timing dials, while watching the time-

distance diagrams and checking the mean-max queues. 

Figure 4. A47 Junction 20 Network Layout, four signalled 
nodes 
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Having achieved good progression, we then manually 

reduced the green times for external (i.e. 

approaching) phases to achieve a degree of 

saturation close to or slightly below 90%, giving the 

spare green time to the circulatory phases. This 

distorts the Practical Reserve Capacity results for the 

network, which now show close to 0% PRC, but 

mimics how most roundabouts and interchanges are 

conventionally configured in practice. Progression 

was then re-checked. 

The queue lengths on the shortest circulatory links 

now need to be looked at in detail. Linsig assumes a 

uniform arrival rate at all entries to the network, however in practice arrival rates vary, sometimes dramatically. On 

an approach lane with unlimited queueing space and assuming fixed time, the queue would be averaged out over the 

measured period, resulting in the predicted mean-max queue. The circulatory lanes do not have unlimited queuing 

space though, and if a queue forms over the previous up-stream stop line, these drivers could be ‘cut off’, failing to 

get green and resulting in a quick forming, excess queue.  

Where the upstream flow into the circulatory phase is 

limited to less than the available capacity at the 

downstream circulatory phase, the excess queue will form 

upstream – and not cause a problem. In this case however, 

the upstream phases (both the approach and first 

circulatory phase) receive long green times, several times 

longer than the short circulatory phase. Any variation in 

arrival rate will not be noticed at the first or second stop 

line, but would be noticed at the third, if there were an 

increase in traffic travelling West-to-South or East-to-

North. The flows for these routes were predicted to be very 

low, but already used a significant amount of the potential 

queueing space. Low flows are less certain and subject to higher deviation than higher flows. It was therefore likely 

that these minor routes could cause significant queues, despite the initial indications of the results. 

Using the model we predicted when each route was most likely block, when the mean-max queue was predicted to 

be highest. The progression was then altered by time of day to ensure that on these routes, the upstream phases kept 

right of way after the ‘blocking phase’ downstream gained right of way. Within the controller specifications, facilities 

were included to allow this, both in MOVA linking, and the CLF plans. The MOVA linking also included several additional 

features to detect queues forming at the upstream phases, in lanes associated with the short circulatory phases, and 

to hold these links, to clear the queue if it occurs. 

In practice, the interchange operated as foreseen – to the model and as interpreted. Queues form quickly on the short 

circulatory phases in response to high variations in traffic arrival patterns – we suspect related to shift change times 

at large employers locally. The signals respond as fast as a queue forms, displacing the increased volume of traffic on 

Figure 6. Examining MMQ, flow and queue profile 

Figure 5. Manually optimising for progression using time-distance diagrams
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to external approaches and holding green on the routes with a queue forming, relieving the queue before it has caused 

any problems, and giving good progression. 

The site was validated in MOVA and CLF over two weeks and revisited after two months. During the validation, only 

two CLF timings needed adjustment and the MOVA linking was slightly relaxed. Additional facilities for queue 

clearance, including stricter MOVA Linking and Hurry Call overrides, included due to concerns over the potential for 

queues, have never been needed and are not enabled. 

Case Study – Late Lane Changing at A47 Junction 18 
Several miles West of Junction 20, lies A47 Junction 18, north of Peterborough City Centre. This junction is another 

grade-separated interchange, although with limited access to and from the A47 to the West via Junction 17. The 

junction has been under signal control for many years, and equipment is old and has become unreliable. 

Since the parkway network was built, pedestrians have been able to cross the junction using a series of footbridges 

and an underpass. The concrete footbridges have reached end of life, and a scheme is in progress to build at-grade 

pedestrian facilities into the signals, including new footways, to enable the bridges to be demolished. 

The junction has been congested for many years, and there has been a lot of concern about the impact of the scheme 

on traffic at a critical part of the city. We were asked to design and model the junction, to incorporate pedestrian 

facilities, while improving traffic flow. To aid the modelling process and give confidence, we had an external team from 

Atkins available to provide VISSIM microsimulation based on the existing VISSIM City-wide model of Peterborough. 

Together we designed a modelling process to iterate between Linsig and VISSIM, identifying problems, addressing 

them and testing against each other, comparing both against the current traffic conditions. 

Key to the scheme was the ability to demonstrate any capacity loss or increase through various design options. To do 

this with accuracy though, it is essential to have a robust Base Model. The initial iteration of the Base Model in both 

Linsig and VISSIM was simple in construction of the model, and relatively conventional. The flows for both were taken 

from a recent origin-destination survey commissioned for the scheme. 

When compared though, the initial results of both not only failed to match, 

but were at extremes on several arms, either side of the expected benchmark. 

The Linsig model showed high levels of saturation on several internal links, 

with a degree of saturation substantially in excess of 100%, while approach 

lanes known to queue showed as under-saturated. The VISSIM model showed 

none of the queues at all.  

The problem in Linsig clearly starts on the links with greater than 100% 

saturation. In a base model, using traffic count data (not predicted or derived 

flows), it should not be possible to achieve a degree of saturation more than 

100%, although a small margin of error is permissible and to be expected. This 

is because beyond 100% saturation, all remaining traffic should exist as excess 

traffic in a queue, and not be counted across the stop line. Figure 7. Base Model saturation unbalanced 
and significantly exceeding 100% 
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Other problems in the Linsig model could be attributed to queueing from the internal links. Assuming the links are at 

100% saturation, with an excess queue, the standing queue would prevent traffic joining the circulatory even when 

they have right of way. This would result in undercounting in the traffic survey, and therefore a low degree of 

saturation on the lane on the model, as Linsig cannot predict interaction between the queue and upstream stop lines. 

The cause of this problem was looked for during a routine site visit 

to validate the model. As well as measuring cruise times between 

nodes, lane designation and driver behaviour were observed. 

During this visit we identified driver behaviour and misuse of lanes 

as the cause of the error. The manoeuvre predicted by Linsig to 

have a degree of saturation in excess of 100% was indeed, at 

times, fully saturated. During these times though, some drivers 

would instead use an alternative lane, marked to a different 

destination. Having avoided the queue on the approach and first 

circulatory phase, they would then turn around the ‘outside’ of the 

roundabout, using a small area of hatching to merge back in to the 

correct lane, before the downstream stop line. In this way, more 

traffic was able to turn around the roundabout, than would fit in the 

single designated lane as modelled.  

This is not an easy situation to model in either Linsig or VISSIM. The 

obvious options are to only allow correct behaviour in the model, 

resulting in a large negative error, or to allow the unauthorised 

behaviour, by adding link connectors to create a valid route. 

Assigning traffic to this though, the Linsig assignment model 

distributes far too much traffic to the ‘incorrect’ lane, making the 

degree of saturation in the ‘correct’ lane disproportionately low and 

creating queueing in other lanes, where it has not been observed. 

Furthermore, Linsig cannot model the interaction between vehicles 

as they merge.  

To solve this problem, a balance had to be struck in allocation of 

vehicles between the two possible routes – ‘correct’ and 

‘incorrect’. The observations we had made confirmed that this 

route was indeed saturated during the peak. We could therefore 

determine that a correct Base Model should show these lanes as 

being at or close to 100% Saturated. We could also assume that 

drivers would not choose to use the ‘incorrect’ route if the 

correct route has less delay. Having added the links, and locking 

the flow in the ‘incorrect’ route, we manually added traffic to it, 

before assigning the remaining traffic flow. Using the two 

assumptions above, it was possible to iterate through each 

scenario until reaching a point where the correct route was 

Figure 9. Lane Connectors configured as marked on-street. 

Figure 8. Driver changing lanes over hatching 

Figure 10. Additional Lane Connectors added, flows manually 
entered and locked. Degree of saturation balanced. 
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approximately fully saturated, and higher than or balanced with the lanes on the other route. 

This approach, while based on judgement, allowed us to build a Base Model which correlates with real life 

observations. As a result we can be confident in using the results as a baseline to compare future models against. We 

would be concerned about the validity of this approach in predicting future performance, but the hatched area used 

for vehicles to merge is removed in all future design options, meaning that the models built to evaluate the proposals 

can be built using conventional techniques. 

Case Study – A complex urban network, Peterborough City Centre 
Peterborough City Centre is undergoing rapid change in recent years as retailers are moving into previously industrial 

areas, and urban dual-carriageways increasingly need to cater for pedestrians. Changes have included new junctions 

and crossings, as well as street scene enhancements. While these changes have been modelled and investigated 

individually, the overall combined effect had not been studied. With yet another signalled junction due to be built 

relatively close to a large unsignalled roundabout, a detailed model was commissioned, using both VISSIM and Linsig, 

to investigate the potential impact of the new junction, and to identify any opportunities for improving network 

coordination.  

One of these potential opportunities was thought to be 

the ability to indirectly control the roundabout by 

coordinating junctions on each of the three main 

approaches. 

The approach taken was to build parallel models in both 

VISSIM and Linsig, again validating between the models 

in iterative steps. Several ‘check’ measurements of 

queues were made on site, specifically to compare the 

queue lengths from the VISSIM model. Turning count 

data from all junctions was collected and assigned to an 

origin – destination matrix using the Linsig Turning Count 

tool, and standard route allocation, before comparing 

lane counts against VISSIM. 

Very quickly, a significant problem with traffic lane 

allocation appeared in Linsig. Using the normal 

allocation of traffic, around the large busy priority 

roundabout at the centre of the network, traffic appeared to choose unusual routes. By analysing the route times and 

delay, we can see this is due to (real) delay in one particular lane. As the roundabout has conventional markings 

requiring drivers to change lanes, link connectors allow this movement. Linsig is identifying these as opportunities for 

routing traffic with lower delay though and is allocating traffic accordingly. While some drivers may be doing this, the 

vast majority are not.  

Figure 11. Crescent Bridge Network, Base Model 
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In order to solve this problem, the routes 

were analysed manually and routes 

involving multiple lane changes not seen 

on site were disallowed manually. The 

give-way characteristics of one approach 

lane was also modified away from typical 

‘roundabout’ values and towards ‘left 

turn’ values, reflecting an unusual 

geometry and matching more closely what 

happens on site. 

Queues throughout the network were 

examined in the Base Model, and compared with observations. The Linsig model appears to show throughout most of 

the dual carriageway network, that mean-maximum queues are within the physical restraints of the site. Local 

coordination through the dual carriageway section of the model also means that internal links should never be able to 

exit block as a result of main-road traffic, although additional traffic can join from a range of minor priority side roads. 

While the modelled mean-max queues are within physical limits, and 

coordination means that any random excess queue is held on the 

approaches, not the internal links, Linsig did give warnings of multiple 

‘Sliver Queues’. These queues form for a number of reasons, normally 

when traffic on a high-saturation flow lane is discharged into a queue on a 

lane with a lower saturation flow, after the start of the downstream green, 

but before the queue has cleared. In many cases these sliver queues are 

irrelevant and caused by statistical anomalies.  

Before disregarding it, the queue and its cause should be checked. By 

examining the queue profile diagrams, we can see in this case that the sliver 

queue reflects the lead vehicle from the upstream stop line joining the 

downstream queue as it clears the stop line. The front of the platoon then 

creates a further sliver queue as it reaches the next stop line at the start of 

green. This is highly efficient, as it results in maximum traffic discharge over 

the downstream stop lines. In these cases, Linsig has a ‘de-sliver threshold’ 

that can be set to ignore the phenomena and to clear the warning, although 

we should be aware that in this case, this is likely to be a real and 

observable.  

Comparing the results to site observations, they can be seen to match 

closely. First observations indicated that this section of the network was 

oversaturated and queuing as a result. Closer observations though show 

that the road remains free flowing for extended periods – the queues within 

the network are being cleared. The queues within the network are actually 

platoons, moving through the network, passing each successive stop line at saturation flow, shortly after the start of 

green. In these circumstances, we can legitimately consider revising our model to reduce or remove the starting 

Figure 12. Routes manually disallowed 

Figure 14. Platoon of traffic passing through the 
same lanes. 

Figure 13. Sliver queues forming at start of green 
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displacement on the shortest internal links, and on links with only a single controlled entry point and rigid coordination, 

random queueing can be ignored. 

Ultimately, the development and new junction has been allowed to proceed. The concept of controlling the central 

roundabout by using the junctions on each arm was shown not to work, as the lower maximum saturation flow onto 

the roundabout causes each main arm to act as a reservoir, storing the end of a platoon as a queue. There is then 

insufficient time between the back of the queue clearing and the next platoon arriving to allow a meaningful increase 

in the flow at the next roundabout node. Some other options were shown to provide potential benefits, however the 

benefit was too low and uncertain, while disruption and cost was too high for the options to be feasible. While not 

identifying any improvements, the modelling work did allow the local authority to make an informed choice and to 

avoid costly and disruptive works, which may have provided no significant benefit. 

Other Tools for Complex Networks 
Some of the most significant errors in a complex 

Linsig model come from inaccurate input and 

assignment of traffic flows. Other than the 

standard origin-destination tables, Linsig also 

has an option for adding turning count data, as 

it is often collected. This can then be estimated 

into the standard OD matrix, with the error 

shown for each movement. 

Another useful tool is the Lane-Based flow entry 

mode. Although there are fewer occasions when 

it is needed, this allows the user to add lane 

counts, potentially from automatic count points. 

Using Lane-Base Flows, traffic can be assigned to 

layers, allowing routes to be effectively managed based on traffic type, potentially making it easier to allow moves for 

some vehicles (such as buses, taxis and motorcycles), while prohibiting them for others (cars and vans), such as in the 

photo in Figure 2. This also has the advantage that it can be used at the same time as an OD matrix. The two in 

combination can be used to add data from different sources, although great care must be taken not to omit or 

duplicate any data. It can also be difficult to understand some of the results, as the input data is split. 

In some circumstances, basic parameters through a complex model may change, either by time of day, or depending 

on the route of traffic (or nature of traffic). A bus station or HGV access may present vehicles that are substantially 

slower in real life than the average used in the model. When looking for the effects of this on coordination over 

successive stop lines, the margin of error multiplies. To improve the accuracy, it is important firstly to ensure that the 

travel times or speeds used on Lane Connectors is accurate, by measurement if possible. Where values may change 

significantly, the Lane Connector values may be overridden, by flow group, route or layer. Cruise times on the Lane 

connectors can be weighted to encourage more or less traffic onto the link during delay-based assignment. Platoon 

dispersion can also be removed where distances are short and coordination is fixed. 

Figure 15. Traffic flow data entered as turning counts. 
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Conclusion 
Linsig has a wide variety of tools and data which at times come in useful for complex networks, particularly the most 

difficult and error prone tasks. It is important to remember that a model is only as accurate as the data it starts with. 

The more layers of manipulation or extrapolation that data is put through, the higher the rate of error that should be 

expected. Likewise, as the size of a model increases, any inherent errors are magnified. 

It is essentially a balancing act to keep models as small and simple as possible, while including as much detail as 

necessary to make the model useful. As the size and complexity of the model grows, it becomes increasingly important 

to use the tools available in Linsig to counter any errors. 

Remember that Linsig (and all traffic modelling software) only provides an estimate, based on previous observations 

of typical behaviour, an assumption that behaviour will be the same everywhere and that this will remain true in the 

future. In reality, driver behaviour changes between regions, between sites and even by time of day. In most cases, 

not enough to substantially change the results, but all sites are unique, so there is always the potential. Be aware of 

this, measure anything unusual that can be quantified, and adapt the model if necessary. 

More importantly than anything else, always interpret the results and if possible, compare the model against real life. 

If they don’t match, the model is not useful. 
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